| CATAL DE LA | | | | | | DATE RE | QUESTED | DATE REQUIRE | D REG | אטוווצוטג | 100. | | |---|-------------------------------------|------------------------------|--|-----------------------|---|---------------|------------------------------|------------------------|-----------------|-------------|---------------------------------------|--| | 0: | SAJIM-SP | | PRINTING | SECT | TON | 0 | 41 | DC+10 | ٥ | | | 00028 | | • | TED BY (Name; Rm No., C |
Drg. | DELIVERTO |) | | DESCRIP | TION OF OR | GINAL AND ADDIT | TONAL INS | TRUCTION | VS. | | | nd Ext.) | | | | | | | | | | | | | | | Terry Vermae | len | | | | Scani | file dod | cument and | format | into | 1.5meg | | | | PD-E Room 96 | 9 | SAME | • | | | | nto a CD. N | | | | \$
5 | | | Ext. 1498 | | | | | be pa | art1. pa | art2 and so | on | Also | want 1 | | | | | | | | | COMP | lete PDI | file of w | hole d | ocume | nt. | | | | | | | : | | | | | | | · · | | | TOTAL PROCESSION | | | TOTAL | NO | SERVICES | COPIES | TOTAL | PRINTING I | NETRUCTIC | NS | SINDING INS | STRUCTIONS | | NO. | SERVICES | COPIES
REQ'D | PROD. | NO.
ORIG. | REQUIRED | REQ'D | PROD/UNITS | PHINTING | Nathocise | 143 | | | | ORIG. | | <u> </u> | 1, | | | | <u> </u> | NO COPIES | NO. PAG | ES. | HOLES DIAM. | CTO C PCS. | | | PHOTO REPROD | UCTION | | рното | CONTINUOUS TONE | 1 | | SCANNING | 350 | | | | | JIAZO PI | RODUCTION | | | | □ 105 MM □ 35 MM | | | TRIM SIZE | COLOR | | □ LOOSE | I D sew | | | AUTO POS - PAPER | | | <u> </u> | 2% x 2% | | 1 | TUIN SIZE | | | ☐ PADS | □зим | | | AUTO POS - MYLAR | | | | 4 x 5 | | | | | | □ SETS | STAPLE | | | BROWN LINE | 1 | | ļ | | 011011015 | TINC | FACE ONLY | | | NO. STAPLES | FOSITION | | | BLUE LINE | <u> </u> | | · | OFFSET PRINTING/ | DUPLICAT | ING | HEAD TO FOOT | HEAD | TO HEAD | | 3 | | | BLACK LINE | | | | ELECTRO. PLATE | | | HEAD TO LEFT | - DHEAD | ro RIGHT | SHEETS IN PAD | 1 | | | SEPIA PRINT | | | | ITEK PLATE | | | | APER | | SETS IN PAD | | | PHOTO/I | LINE - FILM NEGATIVE | S/POSITI | VES | | METAL PLATE | | ļ | | , | COLOR | SHEETS IN SET | | | | ☐ 10 x 12 ☐ 14 x 17 | | | | | | | WEIGHT | KIND | COLOR | DISPOSITION OF | I OSICINALS | | | ☐ 16 × 20 ☐ 20 × 24 | | | FILM | IEG/POS - HALFTONES | <u> </u> | | <u> </u> | <u> </u> | | NEGATIVES, PL | | | | | | | | ☐ 10 x 12 ☐ 14 x 17 | | | | | | BETAIN | , . | | PHOTO/ | PRINTS | <u> </u> | | | . ☐ 16 x 20 ☐ 20 x 24 | | | | | | | FIRETUEN | | | [□4×5 □5×7 | | | | | | | 1 | | | D.DESTROY | | | | □ 8 x 10 □ 10 x 12 | | | PRESS | RUN | | | CERTIFICATION | : I certify th | at the ser- | SIG. OF CERTIF | YING OFFICIAL | | | 16 × 20 | | | | □ 10 x 15 □ 11 x 1 | 7 | | vices requested are | | | | 11 | | | 10.7.2.0 | 1 | | 1 | 17 × 22 | | | use. Appropriation | | | 7 |) | | D/C - D | DIST. CO B/N BATCH! | VO. R/C | RECORD CD | | | | | . MILITARY | ☐ CIV | /IL | dec | | | | | | ···· | | | | | | | | | And the second s | | REC | QUESTOR FILL IN BO | RDERED | AREA | | | | Mark and a single section of | | | | (| | | <u> </u> | personal distribution of the second | | F 1 11 | again a fairtean agus | Santa (1945) property in a first a second fill for the first (1945) for the | Oil . | | 2 | | | | ************************************** | | | 5 | Ó | 上へも | 71 | ricane. | 7/6 | 115719 | 7 | | · | | | | | RACTOR | CODE
ORGANIZATION
CODE | 4029 | erx | ion | | | | | 9 | | | | | | N N N | | | | | レガバ | | ATE
OMPLETED | DA | TE
CEIVED | | | | ORDER S | COD
ORG/ | | | 1 | ADP WO | RK CODE | 2 | | | | TOTAL COST | | | NUMBER Ö | 00 | JOB TITLE | | , | (CHANG | E NUMBER) | · · | DA YR | , 40 | DA YR | | | | 3 4 5 6 7 8 9 | 10 11 12 | 13 14 15 16 17 1 | 19 20 21 | 22 23 24 25 26 27 28 29 30 31 | 32 33 34 35 3 | 6 37 38 39 40 41 | 42 43 44 45 46 47 4 48 | 19 50 51 52 53 | 60 61 | 62 63 64 65 70 71 | 1 72 73 74 75 76 77 | | 12 | - | 1 | | | | | | | | | ┖ ╅┼ | | | PA | | | | | | | | 5 | | l | 8/1 | | | 1 11 | | | entroide artist | | | 20 24 25 2 | 0 22 20 20 40 41 | 42 43 44 45 46 47 | | | | | | | | and the second second | - Carlo - Carlo de Carlo de Carlo de Carlo - Carlo - Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Car | . , . | | 23 24 32 3 | P 71 78 72 40 41 | 42 43 44 43 40 41 | | | | | | RE | 3 | | | | | | | | | | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | | | | | | | | | | | | | - A | | | | .* | | • | | | * V/ | | | | | | | ro: | SAJIM-59 | | PRINTING | SECT | TON | | QUESTED | DATE REQUIRED | \ | 40!TI8IU£ | | 3002 | -8 | |------------------------|--------------------------|---------------------------|-------------|-----------------------------|------------------------------|-----------------|---------------------------------------|---|--------------------|---------------|-------------------|--
--| | REQUES | STED BY (Name; Rm No., C | Drg. | DELIVERTO | | | DESCRIP | TION OF OR | IGINAL AND ADDITE | ONAL INS | TRUCTION | NS | | | | and Ext. | | len | SAME | | | RDF 1 | files or
art1, pa | cument and into a CD. Na
art2 and so
F file of wh | ming on | seque
Also | nce can
want 1 | | | | endutagere
NO. | SERVICES | COPIES | | NO. | SERVICES | COPIES
REQ'D | TOTAL PROD/UNITS | PRINTING IN | | | BINDING II | STRUCTIO | | | ORIG. | REQUIRED | REQ'D | PROD. | ORIG. | REQUIRED | N.E.G.D | T NO D/OI 110 | NO COPIES | NO. PAG | ES | HOLES DIAM. | 10706 | Fos. | | | PHOTO REPROD | UCTION | | PHOTO | CONTINUOUS TONE | | · · · · · · · · · · · · · · · · · · · | SCANNING | 350 | | | | | | DIAZO | PRODUCTION | | | · · | □ 105 MM □ 35 MM | | | TRIM SIZE | COLOR | | LOOSE | ☐ SEW | A CONTRACTOR OF THE PROPERTY. | | K-STAKEN BANGAR BANGAR | AUTO POS - PAPER | | | | 2% x 2% | | | I HIM SIZE | | | PADS | □ suw | Ť | | | AUTO POS - MYLAR | | | | 4 x 5 | | | | | | □ SETS | O STAI | | | | BROWN LINE | | | | | (2) 1 2 2 2 2 | 1 | FACE ONLY | | | NO. STAPLES | FOSITIO | management management of the control of the Control | | | BLUE LINE | | | | OFFSET PRINTING | DUPLICAT | ING | HEAD TO FOOT | HEAD | TO HEAD | | | 1 | | | BLACK LINE | | | | ELECTRO. PLATE | | | HEAD TO LEFT | HEAD T | ro BIGHT | SHEETS IN PAG | | Lagran and Lagrange - Section (Co.) | | | SEPIA PRINT | | | | ITEK PLATE | | | 1 | PER | | SETS IN PAD | r
gar man an de marine marine e service de plus plus et a s'approprie de la service de la service de la service | and the same of th | | РНОТО | LINE - FILM NEGATIVE | S/POSITI | VES | | METAL PLATE | | J. | - | | Lagran | · | | | | | 1 10 x 12 14 x 17 | | | | | | | WEIGHT | KIND | COLOR | SHEETS IN SET | | A 1 8 | | | ☐ 16 × 20 ☐ 20 × 24 | | | FILMN | EG/POS - HALFTONE | S | | | | | NEGATIVES, P | | | | | | | | | ☐ 10 x 12 ☐ 14 x 17 | 7 | | | | | RETAIN | | | | SUCTO | /PRINTS | J | | | ☐ 16 × 20 ☐ 20 × 24 | 4 | | | <u> </u> | | 3 | | 105.21 | | rnoro | 1 4 x 3 5 x 7 | T | | | | | | | | | D.DESTROY | וופאדעו | JAN | | | □ 8 x 10 □ 10 x 12 | + | | PRESS | RUN | | | CERTIFICATION: | | | SIG. OF CERTI | FYING OF | FICIAL | | | 16 x 20 | | + | | □ 10 x 15 □ 11 x | 17 | | vices requested are f
use. Appropriation | | | | 1 | | | | 10 x 20 | - | | | 17 x 22 | | | use, Appropriation | | | 7 | ') | | | | DIST. CD B/N BATCH | in B/C | BECORD CD | 1 | | | | MILITARY | CIV CIV | AL. | dec | | THE STATE OF S | | D/C · | DIST. CD BYN SATCH ! | VO. H/C | - NECOND CO | <u> </u> | | | | | | | | PRODUCTING SECTIONS | Market Street, | | RE | QUESTOR FILL IN BO | RDERED | AREA | receipe madical of Parties. | | | | | | | | | | | | 2 3 4 5 6 7 8 9 | CODE
ORGANIZAT
CODE | JOB TITLE | ect: | 22 23 24 25 26 27 28 29 30 3 | ADP WO (CHARG | | DAT COI MO 142 43 44 45 46 47 48 49 42 43 44 45 46 47 | MPLETED
DA YR | MO
60 61 | CEIVED
DA YR | TOTAL
COST
71 72 73 74 7 | \$ 75 77 | ### **ENVIRONMENTAL ASSESSMENT** BEACH EROSION CONTROL AND HURRICANE PROTECTION PROJECT DADE COUNTY, FLORIDA SECOND PERIODIC RENOURISHMENT AT HAULOVER BEACH PARK # DEPARTMENT OF THE ARMY JACKSONVILLE DISTRICT CORPS OF ENGINEERS P. O. BOX 4970 JACKSONVILLE, FLORIDA 32232-0019 #### FINDING OF NO SIGNIFICANT IMPACT # SECOND PERIODIC RENOURISHMENT AT HAULOVER BEACH PARK #### BEACH EROSION CONTROL AND HURRICANE PROTECTION PROJECT DADE COUNTY, FLORIDA I have reviewed the Environmental Assessment (EA) for the proposed action. This Finding incorporates by reference all discussions and conclusions contained in the Environmental Assessment enclosed hereto. Based on information analyzed in the EA, reflecting pertinent information obtained from agencies having jurisdiction by law and/or special expertise, I conclude that the proposed action will not significantly impact the quality of the human environment and does not require an Environmental Impact Statement. Reasons for this conclusion are in summary: - a. The proposed action would restore a section of severely eroded beach at Haulover Beach Park in Dade County, Florida thus preventing or reducing loss of public beachfront to continuing erosional forces and preventing or reducing periodic damages and potential risk to life, health and property in the developed lands adjacent to the beach. - b. Measures to prevent or minimize impacts to sea turtles in accordance with Biological Opinions from the U.S. Fish and Wildlife Service and the National Marine Fisheries Service will be implemented during and after project construction. To protect the manatee, all water-based activities would follow standard manatee protection measures. There would be no adverse impacts to other Federally listed endangered or threatened species. - c. Based on historic property field investigations, no potentially significant cultural resources are located in the proposed offshore borrow area. No significant historical properties have been identified on the segment of beach proposed for renourishment. - d. The Florida Department of Environmental Protection on July 27, 2001 issued Water Quality Certification (Permit No. 0128781-001-JC), pursuant to Section 401 of the Clean Water Act. With issuance of the WCQ the project is consistent with the Florida Coastal Zone Management Program. e. Measures to eliminate, reduce, or avoid potential impacts to fish and wildlife resources include the following: (1) A buffer zone with a minimum distance of 400 feet from any hardbottom has been established for the proposed borrow area, (2) Visual inspections of hardbottom in proximity to the dredging area would be routinely conducted to look for any indicators of turbidity, sedimentation or mechanical impacts, (3) Extensive turbidity monitoring would be performed at the beach fill and dredging sites during construction to ensure turbidity levels do not exceed the State water quality standard, (4) To avoid mechanical damage to hardbottom habitat associated with dredging, precision electronic positioning equipment would be used to ensure the dredge remains in the borrow area during dredging operations. 9<u>\$JUNE 0</u>2 James G. May Colonel, U.S. Army District Engineer # ENVIRONMENTAL ASSESSMENT ON # SECOND PERIODIC RENOURISHMENT AT HAULOVER BEACH PARK BEACH EROSION CONTROL AND HURRICANE PROTECTION PROJECT DADE COUNTY, FLORIDA #### **TABLE OF CONTENTS** | TABLE | OF CONTENTS | I | |--------------|---|-----| | 1. PR(| DJECT PURPOSE AND NEED | 1 | | 1.1 | PROJECT AUTHORITY. | | | 1.1.1 | | | | 1.1.2 | | | | 1.2 | PROJECT LOCATION. | | | 1.3 | PROJECT NEED OR OPPORTUNITY. | | | 1.4 | DESCRIPTION OF PROPOSED ACTION | | | 1.5 | RELATED ENVIRONMENTAL DOCUMENTS. | | | 1.6 | DECISIONS TO BE MADE. | | | 1.7 | SCOPING AND ISSUES. | | | 1.7.1 | | | | 1.7.1 | | | | | 7.2.1 Hardground and Reef Impacts. | | | | 7.2.2 Sea Turtles | | | • | 7.2.3 Other Impacts | | | 1.7.3 | , | | | 1.7.3 | PERMITS, LICENSES, AND ENTITLEMENTS. | | | | | | | 2. AL7 | TERNATIVES | . 9 | | 2.1 | DESCRIPTION OF ALTERNATIVES | 9 | | 2.1.1 | | | | 2.1.2 | | | | 2.1.3 | DISTANT DOMESTIC SAND SOURCES | 9 | | 2.1.4 | UPLAND SAND SOURCE | 10 | | 2.1.5 | | | | 2.2 | COMPARISON OF ALTERNATIVES | 10 | | 2.3 | MITIGATION | | | | | | | | ECTED ENVIRONMENT | | | 3.1 | VEGETATION | 13 | | 3.2 | THREATENED AND ENDANGERED SPECIES | | | 3.2.1 | | | | 3.2.2 | | 13 | | 3.2.3 | | | | 3.3 | FISH AND WILDLIFE RESOURCES | | | 3.3.1 | | | | 3.3.2 | | 14 | | 3.4 | ESSENTIAL FISH HABITAT | 15 | | 3.5 | COASTAL BARRIER RESOURCES | | | 3.6 | WATER QUALITYHAZARDOUS, TOXIC AND RADIOACTIVE WASTE | 15 | | | | | | | | AIR QUALITY | | |---|--------|--|------| | | | NOISE | | | | | AESTHETIC RESOURCES | | | | | RECREATION RESOURCES | | | | 3.12 | HISTORIC PROPERTIES | . 16 | | 4 | ENV | IRONMENTAL EFFECTS | .17 |
| • | | GENERAL ENVIRONMENTAL EFFECTS | | | | | VEGETATION | | | | 4.2.1 | BEACH RENOURISHMENT ACTIVITIES | | | | 4.2.2 | | | | | 4.2.3 | | | | | 4.2.4 | | | | | 4.2.5 | | | | | 4.2.6 | NO ACTION ALTERNATIVE (STATUS QUO) | . 17 | | | 4.3 | THREATENED AND ENDANGERED SPECIES | . 17 | | | 4.3.1 | BEACH RENOURISHMENT ACTIVITIES | . 17 | | | 4.3.2 | PROPOSED BORROW AREA: EBB SHOAL AT BAKERS HAULOVER INLET | . 18 | | | 4.3.3 | BORROW AREA SOUTH OF GOVERNMENT CUT | . 18 | | | 4.3.4 | UPLAND SAND SOURCE | . 18 | | | 4.3.5 | NO ACTION ALTERNATIVE (STATUS QUO) | . 18 | | | 4.4 | FISH AND WILDLIFE RESOURCES | . 18 | | | 4.4.1 | BEACH RENOURISHMENT ACTIVITIES | . 18 | | | 4.4.2 | PROPOSED BORROW AREA: EBB SHOAL AT BAKERS HAULOVER INLET | . 19 | | | 4.4.3 | BORROW AREA SOUTH OF GOVERNMENT CUT | . 19 | | | 4.4.4 | DISTANT DOMESTIC AND UPLAND SAND SOURCES | . 21 | | | 4.4.5 | NO ACTION ALTERNATIVE (STATUS QUO) | . 21 | | | 4.5 | ESSENTIAL FISH HABITAT | | | | 4.6 | COASTAL BARRIER RESOURCES | . 22 | | | | WATER QUALITY | | | | | HAZARDOUS, TOXIC, AND RADIOACTIVE WASTE | | | | | AIR QUALITY | | | | 4.10 | NOISE | | | | | AESTHETICS | | | | 4.12 | RECREATION | | | | 4.13 | HISTORIC PROPERTIES | | | | 4.14 | ENERGY REQUIREMENTS AND CONSERVATION | | | | 4.15 | NATURAL OR DEPLETABLE RESOURCES | | | | 4.16 | CUMULATIVE IMPACTS | | | | | IRREVERSIBLE AND IRRETRIEVABLE COMMITMENT OF RESOURCES | | | | 4.17.1 | | | | | 4.17.2 | 2 IRRETRIEVABLE | | | | 4.18 | LOCAL SHORT-TERM USES AND MAINTENANCE/ENHANCEMENT OF LONG-TERM | 24 | | | | | | | | PRODU | CTIVITY | 24 | | 5 | . ENV | IRONMENTAL COMMITMENTS | .25 | | _ | | ADULANAF MUTU FANURANITAL DEGLUDENTAL | | | b | | MPLIANCE WITH ENVIRONMENTAL REQUIREMENTS | | | | 6.1 | NATIONAL ENVIRONMENTAL POLICY ACT OF 1969 | | | | 6.2 | ENDANGERED SPECIES ACT OF 1973 | | | | 6.3 | FISH AND WILDLIFE COORDINATION ACT OF 1958 | | | | 6.4 | NATIONAL HISTORIC PRESERVATION ACT OF 1966 (INTER ALIA) | | | | 6.5 | CLEAN WATER ACT OF 1972 | | | | 6.6 | CLEAN AIR ACT OF 1972 | | | | 6.7 | COASTAL ZONE MANAGEMENT ACT OF 1972 | 27 | | 6.8 | FARMLAND PROTECTION POLICY ACT OF 1981 | | |----------------------------------|--|-------------| | 6.9 | WILD AND SCENIC RIVER ACT OF 1968 | | | 6.10 | MARINE MAMMAL PROTECTION ACT OF 1972 | 28 | | 6.11 | ESTUARY PROTECTION ACT OF 1968 | | | 6.12 | FEDERAL WATER PROJECT RECREATION ACT | | | 6.13 | FISHERY CONSERVATION AND MANAGEMENT ACT OF 1976 | | | 6.14 | SUBMERGED LANDS ACT OF 1953 | 28 | | 6.15 | COASTAL BARRIER RESOURCES ACT & COASTAL BARRIER IMPROVEMENT ACT OF | | | 1990 | 28 | | | 6.16 | RIVERS AND HARBORS ACT OF 1899 | 28 | | 6.17 | ANADROMOUS FISH CONSERVATION ACT | | | 6.18 | MIGRATORY BIRD TREATY ACT AND MIGRATORY BIRD CONSERVATION ACT | 28 | | 6.19 | MARINE PROTECTION, RESEARCH AND SANCTUARIES ACT | 28 | | 6.20 | MAGNUSON-STEVENS FISHERY CONSERVATION AND MANAGEMENT ACT | 28 | | 6.21 | E.O. 11990, PROTECTION OF WETLANDS | 28 | | 6.22 | E.O. 11988, FLOOD PLAIN MANAGEMENT | 28 | | 6.23 | E.O. 12898, ENVIRONMENTAL JUSTICE | 28 | | 6.24 | E.O. 13089, CORAL REEF PROTECTION | 28 | | 7 1107 | | ~~ | | | COF PREPARERS | | | 7.1 | PREPARERS | | | 7.2 | REVIEWERS | 29 | | 8. PUB | BLIC INVOLVEMENT | 29 | | 8.1 | SCOPING AND DRAFT EA | | | 8.2 | AGENCY COORDINATION | | | 8.3 | COMMENTS RECEIVED | | | | RENCES | | | | 1 | | | | DIX A - SECTION 404(B) EVALUATION | | | APPENI | DIX B - COASTAL ZONE MANAGEMENT CONSISTENCY | | | APPEN | DIX C - PERTINENT CORRESPONDENCE | | | APPEND | DIX D - GEOTECHNICAL INFORMATION, BAKERS HAULOVER INLET | | | | , and the second | | | | EBB SHOAL BORROW AREA | | | APPEN | DIX E – PHYSICAL & BIOLOGICAL MONITORING PROGRAM | | | | LIST OF FIGURES | | | | | | | Figure 2
Figure 3
Figure 4 | Project Location Map | 5
6
7 | | Figure 5 | Location of the western edge of the nearshore reef | 8 | | | | | #### **LIST OF TABLES** Table 1. Summary of Direct and Indirect Impacts of Alternatives Considered # ENVIRONMENTAL ASSESSMENT ON SECOND PERIODIC RENOURISHMENT AT HAULOVER BEACH PARK BEACH EROSION CONTROL AND HURRICANE PROTECTION PROJECT DADE COUNTY, FLORIDA #### 1. PROJECT PURPOSE AND NEED #### 1.1 PROJECT AUTHORITY. #### 1.1.1 INITIAL AUTHORIZATION. The Beach Erosion Control and Hurricane Protection (BEC & HP) Project for Dade County, Florida was authorized by the Flood Control Act of 1968. In addition. Section 69 of the 1974 Water Resources Act (P. L. 93-251 dated 7 march 1974) included the initial construction by non-federal interests of the 0.85 mile segment along Bal Harbour Village, immediately south of Bakers Haulover Inlet. The authorized project, as described in HD 335/90/2, provided for the construction of a protective/recreational beach and a protective dune for 9.3 miles of shoreline between Government Cut and Baker's Haulover Inlet (encompassing Miami Beach, Surfside and Bal Harbour) and for the construction of protective/recreational beach along the 1.2 miles of shoreline at Haulover Beach Park. #### 1.1.2 SUPPLEMENTAL APPROPRIATION. The Supplemental Appropriations Act of 1985 and the Water Resources Development Act of 1986 (Public Law 99-662) provided authority for extending the northern limit of the authorized project to include the construction of a protective beach along the 2.5 mile reach of shoreline north of Haulover Beach Park (Sunny Isles) and for periodic nourishment of the new beach. This authority also provided for the extension of the period of Federal participation in the cost of nourishing the authorized 1968 BEC & HP Project for Dade County, which covered 10.5 miles of shoreline extending from Government Cut north to the northern boundary of Haulover Beach Park, from 10 years to the 50-year life of the project. #### 1.2 PROJECT LOCATION. The project is located on the southeast Florida coast within Dade County. Haulover Beach Park is a public park located immediately north of Bakers Haulover Inlet (see figure 1, project location map). #### 1.3 PROJECT NEED OR OPPORTUNITY. Nourishment of Dade County Beaches has become a necessity to provide storm protection. The purpose of the project is to reduce loss of public beach front to continuing erosional forces and to prevent or reduce periodic damages and potential risk to life, health, and property in the developed lands adjacent to the beach. Continual erosion of the beach has resulted in the loss of nesting habitat for threatened and endangered sea turtles loss of protection from storm and hurricane damage and potential risk to life, health, and property. Recent storm impacts to the project (Hurricane Andrew in 1992, Hurricane Gordon in 1994, and the winter storms in 1996) have severely increased the need for the project. #### 1.4 DESCRIPTION OF PROPOSED ACTION The placement of about 114,000 cubic yards of material will be required along the beach at Haulover Beach Park, Dade County, Florida. The beach fill would extend southward from the border with Sunny Isles, approximately 2,600 feet. Refer to figure 2 for a plan view of the fill area. The construction berm width is 120 feet from the ECL at an elevation of +9 feet mean low water (MLW), with a construction tolerance of +/- 0.5 feet. The front slope of the fill will be 1 vertical on 10 horizontal. Refer to figure 3 for a typical profile view. The proposed borrow area is located within the ebb shoal northeast of Bakers Haulover Inlet in 10 to 20 feet of water (figures 1 & 4). #### 1.5 RELATED ENVIRONMENTAL DOCUMENTS. The following is a list of related documents: - a. Dade County Beaches, Florida, Beach Erosion Control and Hurricane Surge Protection, General Design Memorandum, Phase I. U.S. Army Corps of Engineers, Jacksonville District, 1974. - b. Final Environmental Impact Statement, Beach Erosion Control and Hurricane Surge Protection Project, Dade County, Florida. U.S. Army Corps of Engineers, Jacksonville District, April 1975. - c. Beach Erosion Control and Hurricane
Protection Study for Dade County, Florida, North of Haulover Beach Park, Survey Report and EIS Supplement. U.S. Army Corps of Engineers, Jacksonville District, June 1984. - d. Final Environmental Assessment, Second Periodic Nourishment, Sunny Isles and Miami Beach Segments, Beach Erosion Control and Hurricane Protection Project, Dade County, Florida. U.S. Army Corps of Engineers, Jacksonville District, May 1995. - e. Coast of Florida Erosion and Storm Effects Study, Region III, Feasibility Report with Final Environmental Impact Statement. U.S. Army Corps of Engineers, Jacksonville District. October 1996. - f. Final Environmental Assessment, Beach Erosion Control and Hurricane Protection Project Dade County, Florida, Second Periodic Nourishment, Surfside and South Miami Beach Segments. U.S. Army Corps of Engineers, Jacksonville District, April 1997 - g. Dade County, Florida, Shore Protection Project, Design Memorandum, Addendum III, North of Haulover Park (Sunny Isles) Segment, U.S. Army Corps of Engineers, Jacksonville District, January 1995. - h. Final Environmental Assessment Beach Erosion Control and Hurricane Protection Project Dade County, Florida, Second Periodic Nourishment, at Bal Harbour. U.S. Army Corps of Engineers, Jacksonville District, May 1998. - i. Final Environmental Impact Statement, Beach Erosion Control and Hurricane Protection Project Dade County, Florida, Modifications at Sunny Isles. U.S. Army Corps of Engineers, Jacksonville District, May 1998. - j. Final Environmental Assessment, Beach Erosion Control and Hurricane Protection Project Dade County, Florida, Renourishment at Miami Beach in the Vicinity of 63rd Street. U.S. Army Corps of Engineers, Jacksonville District, November 2000. #### 1.6 DECISIONS TO BE MADE. The alternatives to provide shore protection for Dade County beaches, from Government Cut north to Bakers Haulover Inlet (including Haulover Beach Park), were evaluated in references 1.5a and 1.5b above. The plan recommended and approved for implementation was beach restoration with periodic renourishment. This Environmental Assessment will not re-evaluate the alternatives to beach renourishment but, will evaluate alternative sand sources to accomplish the renourishment at Haulover Beach Park. #### 1.7 SCOPING AND ISSUES. Scoping for the proposed action was initiated by a Public Notice dated February 3, 2000. The Public Notice was distributed to the appropriate Federal, State and Local agencies, appropriate city and county officials, and other parties known to be interested in the project. Copies of the Public Notice, the list of addressees used to distribute the notice, and letters of response are included in Appendix C, Pertinent Correspondence. #### 1.7.1 ISSUES EVALUATED IN DETAIL. The following issues were identified during scoping and by the preparers of this Environmental Assessment to be relevant to the proposed action and appropriate for detailed evaluation: - a. Turbidity and sedimentation impacts to hardground/reef communities. - b. Monitoring of reefs adjacent to the borrow area for turbidity and sedimentation impacts. - c. Impacts on nesting sea turtles, nests, and hatchlings. - d. Mitigation. - e. Impacts on historic properties (i.e. historic shipwrecks). - f. Water quality. - g. Recreation. - h. Endangered Species #### 1.7.2 IMPACT MEASUREMENT. The following provides the means and rationale for measurement and comparison of impacts of the proposed action and alternatives. #### 1.7.2.1 Hardground and Reef Impacts. Based on extensive experience with beach renourishment and use of off-shore borrow in Dade County and other Florida beaches, impacts to hardground and reefs can be predicted based on proximity, currents, nature of borrow material, buffer zones and other factors. Our desire in selecting an alternative is to keep impacts to these resources to the minimum practicable in consideration of other project requirements. #### 1.7.2.2 Sea Turtles. Sea Turtle nesting is closely monitored along Dade County's public beaches, including Haulover Beach Park. Detected nests are relocated to a safe hatchery. Impacts of compaction and scarps are fairly well established. In addition, continued beach erosion would reduce available nesting habitat. Corrective and mitigative protocols have been established. It is our goal to minimize impacts to sea turtles and to comply with the requirements of the Endangered Species Act. #### 1.7.2.3 Other Impacts. Bases for impact measurement and comparison are stated more specifically in section 4.0 on ENVIRONMENTAL EFFECTS and other sections of this document and its appendices. # 1.7.3 ISSUES ELIMINATED FROM DETAIL ANALYSIS. No issues were specifically identified for elimination. #### 1.8 PERMITS, LICENSES, AND ENTITLEMENTS. The proposed beach renourishment is subject to the Coastal Zone Management Act. Consultation with the State Historic Preservation Officer is also required. Since there would be a discharge of dredged or fill material into waters of the United States, the proposed Action is subject to Section 404 of the Clean Water Act. In addition the proposed action is subject to Section 401 of the Act for certification of water quality by the state. The Florida Department of Environmental Protection (FDEP) has issue a Water Quality Certification (Permit No. 0128781-00-JC) for this project. If conducted during the sea turtle nesting and hatching season, the proposed action will require daily sea turtle nest surveys and nest relocations. A permit from the Florida Fish and Wildlife Conservation Commission (FWC) to handle sea turtles and relocate nests will be required for the person(s) performing the surveys and nest relocations associated with the proposed action. For the proposed renourishment at Haulover Beach Park, personnel from the Dade County Department of Parks and Recreation will be conducting the surveys and nest relocations. The project sponsor, Dade County Department of Environmental Resources Management (DERM), is responsible for obtaining any real estate easements and rights of way required for this project. Figure 1. Project Location Map Figure 2. Plan view of the beach fill area. Figure 3. Typical beach fill profile view. Figure 4. Proposed Borrow Area, Ebb Shoal at Bakers Haulover Inlet Figure 5. Location of the western edge of the nearshore reef. #### 2. ALTERNATIVES The alternatives section is the heart of this EA. This section describes in detail the no-action alternative, the proposed action, and other reasonable alternatives that were studied in detail. Then based on the information and analysis presented in the sections on the Affected Environment and the Probable Impacts, this section presents the beneficial and adverse environmental effects of all alternatives in comparative form, providing a clear basis for choice among the options for the decisionmaker and the public. As previously mentioned in Section 1.6, the alternatives to provide shore protection for Dade County beaches were evaluated in prior reports. The plan recommended and approved for implementation was beach restoration with periodic renourishment. This Environmental Assessment will not re-evaluate alternatives to beach renourishment but, will evaluate alternatives to accomplish renourishment at Haulover Beach Park. #### 2.1 DESCRIPTION OF ALTERNATIVES. # 2.1.1 PROPOSED BORROW AREA - EBB SHOAL AT BAKERS HAULOVER The proposed borrow area for this renourishment is the ebb shoal at Bakers Haulover Inlet. The area is located approximately 2,000 feet offshore, and just northeast of the inlet in 10 to 20 feet of water (figure 4). The borrow area occupies about half of the ebb shoal. The final design was selected to leave a shoal and resulting wave refraction to minimize the impact to the adjacent shore processes. The material to be excavated is generally light gray to tan, poorly graded shelly sand with a trace of silt and gravel sized shell fragments. The composite mean grain size of the borrow area is 0.54 mm. Silt content ranges from 0.2 to 13.3 percent with an average of 2.7 percent. Large carbonate rock fragments do not occur in the borrow area; therefore, rock removal will not be required. More detail Geotechnical information on the sand source can be found in Appendix D. No hardbottom areas are located within the borrow area, and no hardbottoms occur within 400 feet of the eastern tip of the borrow area. The water depth within the proposed ebb shoal borrow area is too shallow for a hopper dredge. The most likely piece of equipment to be used would be a hydraulic pipeline dredge. A submerged pipeline would be placed from the borrow area to the shore to transfer material from the dredge to the beach. ## 2.1.2 BORROW AREAS SOUTH OF GOVERNMENT CUT Several borrow areas south of Government Cut have been developed for the renourishment of the Dade County BEC&HP Project. All but one of these borrow areas have been used for previous renourishments of the project. The remaining borrow area has been designated as SGC-EXT-2 and is located about 2 miles east of Key Biscayne. The borrow area is in 35 to 45 feet of water and is situated between two hardground/reef communities. To protect reef communities the borrow area has been designed to have a buffer zone of at least 400 feet from any hardground area. The borrow area has also been designed to avoid potentially significant cultural resources identified in the vicinity. Sand from this area is generally light gray, poorly graded carbonate sand with a trace of silt and gravel sized shell fragments. Silt content in the borrow area ranges from 0.8 to 9.2 percent with an average of 3.7 percent. The composite mean grain size is 0.62 mm. Carbonate rock fragments occur within the borrow area and it is estimated that up to 5 percent of the borrow area may be rock fragments from 1 inch to 3 feet in diameter. The use of this borrow area will require that all rock fragments larger than 1 inch be separated from the sand
and disposed of in an approved area offshore. The borrow area is a high quality beach nourishment sand source that contains a low amount of silt. One disadvantage of using the SGC-EXT-2 borrow area when compared to the proposed borrow area is the hauling distance. The distance from the SGC-EXT-2 borrow area to Haulover Beach Park ranges from 12 to 16 miles. This is considerably greater than the distance to the ebb shoal borrow area, which is about 2,000 feet. #### 2.1.3 DISTANT DOMESTIC SAND SOURCES Non-local offshore sources of sand (sand located outside the immediate Dade County area) are discussed here as an alternative to the proposed borrow area. This sand could come from other areas within Florida or perhaps outside the state. According to investigations conducted during of the Coast of Florida Erosion and Storm Effects Study, Region III, a substantial amount of sand lies off the coast of Palm Beach County (estimated at 655,025,947 cubic yards). The renourishment needs of the Palm Beach County Shore Protection Project is estimated at 26,253,000 cubic yards of material over the next 50 years [except the Delray segment (28 years) and Boca Raton segment (43 years)]. Although the use of distant sources causes an increase to project costs, the inadequate supply of sand in Dade County will result in the use of alternate sources in the future. However, Palm Beach County has objected to the use of sediment deposits offshore of Palm Beach County for beach nourishment projects in Dade County. Refer to letter dated 25 April 1995, from the Director of the Department of Environmental Resources Management for Palm Beach County in Appendix C. #### 2.1.4 UPLAND SAND SOURCE Test results on native beach materials and sands available from commercial upland sand quarries indicate that, in most cases, the upland sand sources are texturally very compatible with little or no overfill required. Upland sand quarries are located on the Lake Wales Ridge of the Central Highlands physiographic region of south Florida. One upland source area is located southwest of Lake Okeechobee, at Ortona, Florida. There are presently two quarries at Ortona, and barge canal access to the Okeechobee Waterway is accessible to both quarries. The material from these two quarries consists of clean, medium to fine grained quartz sand that have a mean grain size range of 0.48 mm to 0.55 mm with generally less than 5 percent silt content. This alternative would involve the transporting sand from a quarry site, by either barge or railroad cars, to an appropriate offloading site near the project location. The sand would then be loaded onto dump trucks and then hauled to the beach and dumped at beach access points along the fill site. From these beach stockpiles, the material would be distributed along the beach by earthmoving equipment. Because of the potential to damage bridges, the dump trucks would most likely be limited to a maximum capacity of 12 cubic yards. With an estimated volume of 114,000 cubic yards of sand needed to complete the project, this would require over 9,500 truckloads. The use of larger dump trucks (i.e. 16 to 18 cubic yards), if allowed, would reduce the number of loads but would still be substantial. This would have a significant adverse impact on the traffic within the project area and areas adjacent to the project. There would also be an increase in the noise levels associated with trucking sand to the project site. In addition, vibrations caused by the trucks could damage structures that are located close to the roadways being used. The use of large numbers of trucks would also cause extensive damage to the roads used. This would require that the roads be repaired after construction has been completed. 2.1.5 NO ACTION ALTERNATIVE (STATUS QUO) If the no action alternative is implemented, the present condition of erosion along the shoreline at Haulover Beach Park would continue at its present rate. The no action alternative does not provide the benefits needed to protect the coast from the effects of erosion and storm damage. #### 2.2 COMPARISON OF ALTERNATIVES Table 1 lists the alternatives considered and summarizes the major features and consequences of the proposed action and alternatives. See section 4.0 Environmental Effects for a more detailed discussion of impacts of alternatives. #### 2.3 MITIGATION Borrow area design will ensure sufficient buffer areas to minimize impacts from turbidity, sedimentation and mechanical damage on nearshore hardbottom communities. The eastern edge of the ebb shoal borrow area is located no closer than 400 feet from the shoreward edge of the nearshore hardbottom habitat. Precision positioning of equipment, with a Geographic Positioning System (GPS), will aid in avoiding sensitive areas. Section 5.0 Environmental Commitments, discusses other procedures that will be implemented to avoid or minimize potentially adverse environmental impacts. Table 1: Summary of Direct and Indirect Impacts for Alternatives Considered. | ALTERNATIVE | | | | | | |---|---|---|---|---|--| | ENVIRONMENTAL
FACTOR | PROPOSED EBB SHOAL
BORROW AREA | BORROW AREAS SOUTH OF
GOVERNMENT CUT | DISTANT DOMESTIC SAND
SOURCES | UPLAND SAND SOURCES | NO ACTION | | PROTECTED SPECIES | no impact on manatees, whales, or sea turtles at borrow area; beach fill could impact sea turtle nesting or hatching. | no impact on manatees, whales, or sea
turtles at borrow area; beach fill could
impact sea turtle nesting or hatching. | no impact on manatees, whales, or
sea turtles at borrow area; beach fill
could impact sea turtle nesting or
hatching. | potential impact to sea turtle nesting and hatching; potential to effect scrub jay and gopher tortoise habitat. | continued erosion
could affect sea turtle
nesting habitat. | | HARD GROUND | potential sedimentation, turbidity
and mechanical effects near
borrow area | potential sedimentation, turbidity and
mechanical effects near borrow areas;
impacts to hardgrounds from pipeline
placement. | potential sedimentation, turbidity
and mechanical effects near borrow
areas; impacts to hardgrounds from
pipeline placement. | no impact if sand is truck hauled to
beach; if trans- ported by barge and
pumped to beach, potential impact from
pipeline placement. | no impact | | EFFECTS
ON ADJACENT
SHORELINE EROSION | use of borrow area is not expected to increase erosion on adjacent shoreline. | no effect expected | no effect | no effect | continued erosion of
the project beach. | | FISH AND WILDLIFE
RESOURCES | minor affect on benthic organisms
at beach and borrow sites - beach
habitat improved. | minor affect on benthic organisms at beach and borrow sites - beach habitat improved. | minor affect on benthic organisms at
beach and borrow sites - beach
habitat improved. | depends on wildlife present at quarry -
minimal impact is expected; beach
habitat improved. | continued loss of
beach habitat | | VEGETATION | no seagrass beds present in borrow area; no impact. | no seagrass beds present in borrow area; no impact. | unknown at this time; could impact seagrasses if present in vicinity of borrow area. | no impact to seagrasses; upland vegetation may be affected - extent unknown. | continued erosion
could impact dune
vegetation. | | WATER QUALITY | temporary increase in turbidity and suspended sediments at borrow and beach fill sites. | temporary increase in turbidity and suspended sediments at borrow and beach fill sites. | temporary increase in turbidity and suspended sediments at borrow and beach fill sites. | temporary increase in turbidity and suspended sediments at beach site. | no impact | | HISTORIC
PROPERTIES | no impact expected | no impact expected | not determined | no impact expected | no impact | | ECONOMICS | uses nearby economical sand source | higher costs in comparison due to
mobilization of hopper dredge and
longer transporting distances. | higher costs in comparison due to mobilization of hopper dredge and longer transporting distances. | higher transportation costs; increased maintenance costs on roads used to transport sand. | beach degradation
with potential decrease
in tourism. | | ALTERNATIVE
ENVIRONMENTAL
FACTOR | PROPOSED EBB SHOAL
BORROW AREA | BORROW AREAS SOUTH OF
GOVERNMENT CUT | DISTANT DOMESTIC SAND
SOURCES | UPLAND SAND SOURCES | NO ACTION | |--|---|--|--|--|--| | ENERGY
REQUIREMENTS &
CONSERVATION | smaller energy use in comparison with other alternatives. | higher in comparison to proposed borrow area due to longer transporting distances. | higher in comparison to proposed
borrow area due to longer
transporting distances. | higher in comparison to proposed borrow area due to longer transporting distances. | potentially higher
energy usage during
storm damage clean
up. | Table 1 (Continued): Summary of
Direct and Indirect Impacts for Alternatives Considered. #### 3. AFFECTED ENVIRONMENT The Affected Environment section succinctly describes the existing environmental resources of the areas that would be affected if any of the alternatives were implemented. This section describes only those environmental resources that are relevant to the decision to be made. It does not describe the entire existing environment, but only those environmental resources that would affect or that would be affected by the alternatives if they were implemented. This section, in conjunction with the description of the "no-action" alternative forms the base line conditions for determining the environmental impacts of the proposed action and reasonable alternatives. #### 3.1 VEGETATION The dominant plant species within the dune system at Haulover Beach Park include sea grapes, Coccoloba uvifera; the beach morning glory, Ipomoea pescaprea; beach bean, Canavalia rosea; sea oats, Uniola paniculata; dune panic grass, Panicum amarulum; bay bean, Canavalia maritima. The beach berry or inkberry, Scaevola plumieri; sea lavender, Mallotonia gnaphalodes; spider lily, Hymenocalis latifolia; beach star, Remirea maritima; and coconut palm, Coco nucifera are also present Algal coverage on the offshore hardground areas fluctuates seasonally. The most common algal species observed within southeast Florida offshore hardground areas are *Caulerpa prolifera*, *Codium isthmocladum*, *Gracillaria* sp., *Udotea* sp., *Halimeda* sp., and various members of the crustose coralline algae of the family Corallinaceae. Algal growth is most luxuriant from late July through late October or early November, and there seems to be a particular burst or bloom in the macroalgal population in conjunction with the seasonal upwelling that occurs in late July or early August (Smith, 1981, 1983; Florida Atlantic University and Continental Shelf Associates, Inc., 1994). Seasonally, there is extensive macroalgal growth in the offshore soft bottom areas, with species of green algae (*Caulerpa* sp., *Halimeda* sp., and *Codium* sp.) being particularly abundant in the summer and the brown algal species (*Dictyota* sp. and *Sargassum* sp.) being more abundant in the winter (Courtenay et al., 1974; Florida Atlantic University and Continental Shelf Associates, Inc., 1994). The sea grass *Halophila decipiens* has been observed offshore of Dade County, but is considered seasonal (April through November) in these offshore soft bottom areas. #### 3.2 THREATENED AND ENDANGERED SPECIES #### 3.2.1 SEA TURTLES Sea turtles are present in the open ocean year-round offshore of Dade County because of warm water temperatures and hardbottom habitat used for both foraging and shelter. The predominant species is the loggerhead sea turtle, Caretta caretta, although green Chelonia mydas; leatherback turtles. turtles. Dermochelys coriacea: hawksbill turtles. Eretmochelys imbricata; and Kemp's ridleys, Lepidochelys kempii are also known to exist in the area. All the sea turtles except for the loggerhead are listed as endangered. The loggerhead is listed as threatened. Sea turtle nesting in Dade County occurs from May through September (Meylan et. al., 1995). density of nesting along the Dade County shoreline north of Government Cut is relatively low. The loggerhead accounts for the majority of the nesting in the county with occasional nesting by green and leatherback turtles. Leatherback turtles may start nesting earlier than loggerheads. In Dade County the earliest nest documented by Meylan et. al., 1995 was on April 11, 1992. During the sea turtle nesting season, the Dade County Park and Recreation Department conducts daily surveys and relocates nests found along the beach from Sunny Isles south to Government Cut. This is done to prevent poaching or nest destruction due to beach maintenance, emergency vehicles which access the beach and other human related causes (Flynn 1992). All nests found during the surveys are relocated to a central hatchery on Miami Beach (pers. comm., B. Flynn, Dade Co. Dept. of Env. Res. Mgmt., 1993). #### 3.2.2 WEST INDIAN MANATEE The estuarine waters around the inlets and bays within Dade County provide year-round habitat for the West Indian manatee, *Trichecus manatus*. Although manatees have been observed in the open ocean, they feed and reside mainly in the estuarine areas and around inlets. No significant foraging habitat is known to exist in the areas around the project sites, nor have manatees been known to congregate in the nearshore environment within the project area. # 3.2.3 OTHER THREATENED ENDANGERED SPECIES Other threatened or endangered species that may be found in the in the coastal waters off of Dade County during certain times of the year are the finback whale, Balaenoptera physalus; humpback whale, Megaptera novaeangliae; right whale Eubalaena glacialis; sei whale, Balaenoptera borealis; and the sperm whale Physeter macrocephalus catodon. These are infrequent visitors to the area and are not likely to be impacted by project activities. #### 3.3 FISH AND WILDLIFE RESOURCES # 3.3.1 BEACH AND OFFSHORE SAND BOTTOM COMMUNITIES The beaches of southeast Florida are exposed beaches and receive the full impact of wind and wave action. Intertidal beaches usually have low species richness, but the species that can survive in this high energy environment are abundant. The upper portion of the beach, or subterrestrial fringe, is dominated by various talitrid amphipods and the ghost crab *Ocypode quadrata*. In the midlittoral zone (beach face of the foreshore), polychaetes, isopods, and haustoriid amphipods become dominant forms. In the swash or surf zone, beach fauna is typically dominated by coquina clams of the genus *Donax*, the mole crab *Emerita talpoida*. All these invertebrates are highly specialized for life in this type of environment (Spring, 1981; Nelson, 1985; and U.S. Fish and Wildlife Service [USFWS], 1997). Shallow subtidal soft bottom habitats (0 to 1 meters [0 to 3 feet] depth) show an increasing species richness and are dominated by a relatively even mix of polychaetes (primarily spionids), gastropods (*Oliva sp., Terebra sp.*), portunid crabs (*Arenaeus sp., Callinectes sp., Ovalipes sp.*), and burrowing shrimp (*Callianassa sp.*). In slightly deeper water (1 to 3 meters [3 to 10 feet] depth) the fauna is dominated by polychaetes, haustoid and other amphipod groups, bivalves such as *Donax sp.* and *Tellina sp.* (Marsh *et al.*, 1980; Goldberg *et al.*, 1985; Gorzelany and Nelson, 1987; Nelson, 1985; Dodge *et al.*, 1991. Offshore soft bottom communities are less subject to wave-related stress than are nearshore soft bottom communities. They exhibit a greater numerical dominance by polychaetes as well as an overall greater species richness than their nearshore counterparts. Barry A. Vittor & Associates, Inc. (1984) reported polychaetes made up 68.9 percent of the macrobenthic community off Port Everglades, followed by mollusca (13.2 percent), arthropods (10.7 echinoderms (1.2)percent), miscellaneous other groups (6.0 percent). Goldberg (1985) reported polychaetes as the dominant taxon from his infaunal survey off northern Broward County. Dodge et al. (1991) found polychaetes to be the most abundant group in 18 meters (60 feet) of water off Hollywood, Florida. In March 1989, polychaetes made up 51.7 percent of the macrofaunal community at that location followed by nematodes (14.3 percent), smaller species of crustaceans (9.0 percent), oligochaetes (4.3 percent), nemerteans (3.6 percent), and bivalves (2.9 percent). Larger members of the invertebrate macrofauna seen occasionally in these offshore soft bottom areas between the second and third reef lines include the queen helmet, Cassia madagascariensis; the king helmet, Cassia tuberosa; Florida fighting conch, Strombus alatus; milk conch, Strombus costatus; queen conch, Strombus gigas; Florida spiny jewel box, Arcinella cornuta; decussate bittersweet, Glycymeris decussata; calico clam, Macrocallista maculata; tellin, Tellina sp.; and cushion star, Oreaster reticulatus. Commercially valuable species, such as the Florida lobster, Panulirus argus move through this area as they migrate from offshore to nearshore areas (Courtenay et al., 1974). Surf zone fish communities are typically dominated by relatively few species (Modde and Ross, 1981; Peters and Nelson, 1987). Fish species that can be found in the surf zone include, Atlantic threadfin herring, Opisthonema oglinum; blue runner, Caranx crysos; spotfin moiarra. Eucinostomus argenteus: southern stingray. Dasvatis americana: greater barracuda. Sphyraena barracuda; vellow iack. bartholomaei; and the ocean triggerfish, Canthidermis sufflamen, none of which are of local commercial value. Most of the fish making up the inshore surf community tend to be either small species or juveniles (Modde, 1980). Fish species specifically associated with the sand flats and soft bottom areas between the first and second reefs off Dade countie include lizardfish, *Synodus* sp.; sand tilefish, *Malacanthus plumieri*; yellow goatfish, *Mulloidichthys martinicus*; spotted goatfish, *Pseudupeneus maculatus*; jawfish, *Opistognathus* sp.; stargazer, *Platygillellus (Gillellus) rubrocinctus*; flounder, *Bothus* sp.; and various species of gobies and blennies, none of which have significant local commercial value. #### 3.3.2 REEF/HARDGROUND COMMUNITIES The classic reef distribution pattern described for southeast Florida reefs north of Key Biscayne consists of an inner reef in approximately 15 to 25 foot (5 to 8 meters) of water, a middle patch reef zone in about 30 to 50 foot (9 to 15 meters) of water, and an outer reef in approximately 60 to 100 foot (18 to 30 meters) of water. This general description was first published by Duane and Meisburger (1969) and has been the basis for most descriptions of hardground areas north of Government Cut, Miami since that time (Goldberg,
1973; Courtenay et al., 1974; Lighty et al., 1978; Jaap, 1984). Development of these three reef terraces into their present form is thought to be related to fluctuations in sea level stands associated with the Holocene sea level transgression that began about 10,000 years ago. An extensive sand zone lies between the middle and outer reef communities. It is in this sand area that the offshore borrow areas are located. Lighty et al. (1978) showed that active barrier reef development took place as far north as the Fort Lauderdale area as late as 8,000 years ago. It is possible that the reefs and hardground areas seen from Delray Beach southward are the result of active coral reef growth in the relatively recent past, whereas the hard bottom features seen north of Palm Beach Inlet may represent the outcropping of older, weathered portions on the Anastasia Formation. The reefs north of Palm Beach Inlet (Lake Worth Inlet) do not show the same orientation to shore as those to the south and the classical "three reef" hardgrounds description begins to differ north of that inlet (Continental Shelf Associates, Inc., 1993). The composition of hardground biological assemblages along Florida's east coast has been detailed by Goldberg (1970, 1973), Marszalek and Taylor (1977), Raymond and Antonius (1977), Marszalek (1978), Continental Shelf Associates, Inc. (1984; 1985; 1987; 1993), and Blair and Flynn (1989). Although there are a large variety of hard coral species growing on the reefs north of Government Cut, these corals are no longer actively producing the reef features seen there. The reef features seen north of Government Cut have been termed "gorgonid reefs" (Goldberg, 1970; Raymond and Antonius, 1977) because they support such an extensive and healthy assemblage of octocorals. Goldberg (1973) identified 39 species of octocorals from Palm Beach County waters. The U.S. Environmental Protection Agency (1992) lists 46 species of shallow water gorgonids as occurring along southeast Florida. Surveys by Continental Shelf Associates, Inc. (1984; 1985) identified 33 sponge, 21 octocoral, and 5 hard coral species on offshore reefs off Ocean Ridge and 40 sponge, 18 octocoral, and 14 hard coral species on the offshore reefs off Boca Raton. Blair and Flynn (1989) described the reefs and hard bottom communities off Dade County and compared them to the offshore reef communities from Broward and Palm Beach counties. They documented a decrease in the hard coral species density moving northward from Dade County to Palm Beach County. Despite this gradual decrease in the density of hard coral species present, the overall hardground assemblage of hard corals, soft corals, and sponges seen along southeast Florida's offshore reefs remains remarkably consistent throughout the counties of Dade, Broward, and Palm Beach. Commercially, the most important invertebrate species directly associated with these hardground areas is the Florida lobster. Panulirus argus. Common fish species identified with the reef/hardground communities include grunts (Pomacanthidae), (Haemulidae). angelfish butterflyfish (Chaetodontidae), damselfish (Pomacentridae). wrasses (Labridae), drum (Sciaenidae), sea basses (Serranidae) snapper (Lutjanidae) and parrotfish (Scaridae). commercial and sport fish such as black margate (Ansiotremus surinamensis), gag (Mycteroperca microlepis), red grouper (Epinephelus morio), red snapper (Lutjanus campechanus), gray snapper (L. griseus) Hogfish (Lachnolaimus maximus) and snook (Centropomus undecimalis) are also associated with these reefs. The precise composition of the fish assemblage associated with any given location along these hardground areas is dependent upon the structural complexity of the reef at that location. Herrema (1974) reported over 300 fish species as occurring off southeast Florida. Approximately 20 percent of these species were designated as "secondary" reef fish. Secondary reef fish are fish species that, although occurring on or near reefs, are equally likely to occur over open sand bottoms. Many of these species, such as the sharks, jacks, mullet, bluefish, sailfish, and marlin (none of which have significant local commercial value), are pelagic or open water species and are transient through all areas of their range. #### 3.4 ESSENTIAL FISH HABITAT The Magnuson-Stevens Fishery Conservation and Management Act, 16 USC 1801 et seq. Public Law 104-208 reflects the Secretary of Commerce and Fishery Management Council authority and responsibilities for the protection of essential fish habitat (EFH). Federal agencies that fund, permit, or carry out activities that may adversely impact EFH are required to consult with the National Marine Fisheries Service (NMFS) regarding the potential effects of their actions on EFH. In conformance with the 1996 amendment to the Act, the information provided in this EA will comprise the required EFH assessment and will be coordinated with the NMFS. The proposed project is within the jurisdiction of the South Atlantic Fishery Management Council (SAFMC) and is located in areas designated as EFH for coral. Coral reef and live bottom habitat, red drum, shrimp, spiny lobster, coastal migratory pelagic species and the snapper-grouper complex. In addition, the nearshore hardbottom habitat located in the vicinity of the proposed beach fill and the proposed ebb shoal borrow area are designated as Essential Fish Habitat-Habitat Areas of Particular Concern (EFH-HAPC) for the snapper-grouper complex. #### 3.5 COASTAL BARRIER RESOURCES There are no designated Coastal Barrier Resource Act Units located in the project area that would be affected by this project. #### 3.6 WATER QUALITY Waters off the coast of Dade counties are classified as Class III waters by the State of Florida. Class III category waters are suitable for recreation and the propagation of fish and wildlife. Turbidity is the major limiting factor in coastal water quality in South Turbidity is measured in Nephelometric Turbidity Units (NTU), which quantitatively measure light-scattering characteristics of the water. However, measurement does not address the characteristics of the suspended material that creates turbid conditions. According to Dompe and Haynes (1993), the two major sources of turbidity in coastal areas are very fine organic particulate matter and sediments and sand-sized sediments that become resuspended around the seabed from local waves and currents. Florida state guidelines set to minimize turbidity impacts from beach restoration activities confine turbidity values to under 29 NTU above ambient levels outside the turbidity mixing zone for Class III waters. Turbidity values are generally lowest in the summer months and highest in the winter months, corresponding with winter storm events and the rainy season (Dompe and Haynes, 1993; Coastal Planning & Engineering [CPE], 1989). Moreover, higher turbidity levels can generally be expected around inlet areas, and especially in estuarine areas, where nutrient and entrained sediment levels are higher. Although some colloidal material will remain suspended in the water column upon disturbance, high turbidity episodes usually return to background conditions within several days to several weeks, depending on the duration of the perturbation (storm event or other) and on the amount of suspended fines. # 3.7 HAZARDOUS, TOXIC AND RADIOACTIVE WASTE The coastline within the project area is located adjacent to predominantly residential, commercial and recreational areas. The areas within the project are high energy littoral zones and the material used for nourishment are composed of particles with large grain sizes that do not normally have contaminants adsorbing to them. The nature of the work involved with the renourishment of beaches is such that contamination by hazardous and toxic wastes is very unlikely. No contamination due to hazardous and toxic waste spills is known to be in the study area. #### 3.8 AIR QUALITY Air quality within the project area is good due to the presence of either on or offshore breezes. Dade County is in attainment with the Florida State Air Quality Implementation Plan for all parameters except for the air pollutant ozone. The county is designated as a moderate non-attainment area for ozone. #### 3.9 NOISE Ambient noise around the project area is typical to that experienced in recreational environments. Noise levels range from low to moderate based on the density of development and recreational usage. The major noise producing sources include breaking surf, beach and nearshore water activities, adjacent residential and commercial areas, and boat and vehicular traffic. These sources are expected to remain at their present noise levels. #### 3.10 AESTHETIC RESOURCES The project area consists of light sandy beige beaches that contrast strikingly with the deep hues of the panoramic Atlantic Ocean. The beach is located in a county park with a natural dune system and no large beachfront structures (i.e., condominiums, hotels, etc.) as in the rest of Dade County. The area consists of moderate to good aesthetic values with few exceptions throughout the entire project. #### 3.11 RECREATION RESOURCES Dade County is a heavily populated county on Florida's Atlantic Coast that receives a tremendous volume of tourists, particularly during the winter months. Those beaches, which can be accessed by the general public, are heavily used year round. Those beaches which are associated with condominiums, apartments and hotels have more restricted access for the general public, but receive use from the many visitors who frequent these facilities as well as those members of the general public who walk or jog along the beachfront. Haulover Beach Park is a public park and the beach receives heavy use by swimmers and sunbathers. Other water related activities within the project area include on-shore and offshore fishing, snorkeling, SCUBA diving, windsurfing and
recreational boating. Most of the boating activity in the area originates from either Bakers Haulover Inlet or Government Cut. Both offshore fishing and diving utilize the natural and artificial reefs located within and adjacent to the project area. Commercial enterprises along the beach rent beach chairs, cushions, umbrellas, and jet skis. Food vendors can also be found along the beach areas. The revenue generated by beachgoers supports a resurgent Miami Beach business district in the project vicinity. #### 3.12 HISTORIC PROPERTIES Documented transportation activities along the southeastern coast of Florida date from the second half of the 16th century. As a consequence of over 400 years of navigation in the Bahama Channel, several hundred shipwrecks have been documented in the waters off the southeast coast of the state. Remains of these and other unrecorded shipwrecks may be located in the vicinity of the proposed borrow areas. Archival research and field investigations have been conducted for the study area and coordinated with the Florida State Historic Preservation Officer (SHPO). Results of the investigations for the borrow areas south of Government Cut (including SGC-EXT-2) are discussed in the reports, A Submerged Cultural Resource Magnetometer Survey for Two Borrow Areas, Second Beach Renourishment, Dade County, Florida, May 1993 and A Magnetometer and Side Scan Survey, Borrow Area Extension, Dade County, Florida, October 1996. Both reports were prepared by Tidewater Atlantic Research. Five magnetic anomalies were identified in the areas surveyed during the field investigations described in the above referenced reports. One target was confirmed to be the remains of a modern steel hull vessel sunk as an artificial reef. The other four targets are considered to be potentially significant as their signatures correspond with those of previously identified National Register eligible submerged cultural resources. Results of the field investigation of the ebb shoal borrow area are discussed in the report Submerged Historic Properties Survey of Proposed Borrow Area for Dade County Shore Protection Project, Second Periodic Beach Renourishment at Bal Harbour prepared by Tidewater Atlantic Research. Five magnetic anomalies were identified during the survey. Each signature was determined to be suggestive of modern debris and not a potentially significant submerged cultural resource. No additional investigation of the targets was recommended in the report. No significant historic properties have been identified on the beach segment proposed for renourishment. #### 4. ENVIRONMENTAL EFFECTS This section is the scientific and analytic basis for the comparisons of the alternatives. See table 1 in section 2.0 Alternatives, for summary of impacts. The following includes anticipated changes to the existing environment including direct, indirect, and cumulative effects. #### 4.1 GENERAL ENVIRONMENTAL EFFECTS The placement of sand on the beach would restore some of the beach's ability to provide protection against storms and flooding. It would also enhance the appearance and suitability for recreation along the beach and would provide additional nesting habitat for threatened an endangered species of sea turtles. If no action is taken, the project beach would continue to erode and shoreline recession would continue. Dredging in the proposed borrow area would cause a depletion of sand, however the area does not currently support seagrass, reefs, hard bottom, or other particularly productive habitat that would be altered within the borrow area. Although hardgrounds are located outside of the borrow area, a buffer zone will be used to minimize or eliminate potential impacts due to dredging. #### 4.2 VEGETATION 4.2.1 BEACH RENOURISHMENT ACTIVITIES There are no sea grasses algal communities present in the footprint of the beach fill or the adjacent nearshore areas. No work would be performed on vegetated upland areas. No adverse impacts to either marine or terrestrial vegetation are expected. # 4.2.2 PROPOSED BORROW AREA: EBB SHOAL AT BAKERS HAULOVER INLET There are no seagrass beds present in the proposed ebb shoal borrow area. Depending on the season when dredging would occur, some ephemeral algal communities could be present in the borrow areas. Any algal communities present within the areas dredged would be affected. This impact would be short-term as the algal communities would be expected to regrow after dredging is completed. # 4.2.3 BORROW AREA SOUTH OF GOVERNMENT CUT Dredging impacts on vegetation in this borrow area would be similar to those discussed for the proposed borrow area. 4.2.4 DISTANT DOMESTIC SAND SOURCES No distant offshore sources of sand have been identified or evaluated for this renourishment activity. Impacts associated with using distant offshore sources cannot be predicted at this time. It is possible that distant offshore sand sources may be identified in the future. The assessment of impacts on vegetation would occur at that time. #### 4.2.5 UPLAND SAND SOURCE Sand from an upland source would be obtained from a commercial quarry. There would likely be some loss of terrestrial vegetation at the quarry site in association with the excavation of sand. 4.2.6 NO ACTION ALTERNATIVE (STATUS QUO) This alternative would have no effect on marine vegetation. However, continued erosion could eventually result in the loss upland vegetation adjacent to the beach. #### 4.3 THREATENED AND ENDANGERED SPECIES - 4.3.1 BEACH RENOURISHMENT ACTIVITIES Beach nourishment and associated activities have the potential to impact sea turtles and may have the following effects. These potential effects would apply to any of the alternative sand sources discussed including the preferred borrow area. - a. Scarp development leading to hindrance or blockage of accessibility to nesting habitat. - b. Adverse alteration of moisture levels or temperature in beach due to modified nesting material. - c. Compaction and cementation of beach sediments that cause reduced nesting success and aberrant nest cavity construction resulting in reduced nesting and/or hatching success. - d. If carried out during the nesting season, there is a potential for the destruction of nests that are not identified during the daily nest survey and relocation program. - e. Disruption of nesting activities that could lead to poor nest site selection and energetic cost diminishing egg production. - f. Disorientation or misorientation of hatchlings from adjacent beaches by artificial lights on dredge equipment or construction equipment on the beach. Important physical characteristics of beaches include sand grain size, grain shape, silt-clay content, sand color, beach hardness, moisture content, mineral content, substrate water potential, and porosity/gas diffusion. By using proper management techniques such as nest relocation, tilling of compacted beaches, use of compatible sand, and smoothing of scarp formations, most of the negative effects can be avoided or corrected (Nelson and Dickerson, 1989a). Artificial lighting along the beach is known to effect the orientation of hatchlings (Dickerson and Nelson, 1989; Witherington, 1991) and to effect the emergence of nesting females onto the beach